Distributed Optimization for Machine Learning

School of Electrical and Computer Engineering
University of Tehran
Erfan Darzi

Lecture 3 – Iterative Descent Methods and Convergence Analysis

erfandarzi@ut.ac.ir

Iterative Descent Methods

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $\mathbf{x} \in \mathbb{R}^n$

- If $\nabla f(\mathbf{x}) = \mathbf{0}$, we have a candidate
- If $\nabla f(\mathbf{x}) \neq \mathbf{0}$, not a candidate \rightarrow Can we locally improve?

If
$$\nabla f(\mathbf{x})^T \mathbf{d} < \mathbf{0}$$

$$\exists \ \delta > 0, \text{ s.t. } f(\mathbf{x} + \alpha \mathbf{d}) < f(\mathbf{x}), \quad \forall \alpha \in (0, \delta)$$

Choices of Direction

$$\mathbf{d}^r = -\nabla f(\mathbf{x}^r)$$

$$\mathbf{x}^{r+1} \leftarrow \mathbf{x}^r + \alpha^r \mathbf{d}^r$$

- Steepest/gradient descent:
- Diagonally scaled gradient descent: $\mathbf{d}^r = -\mathbf{D}^r \nabla f(\mathbf{x}^r)$, for some $\mathbf{D}^r \succ \mathbf{0}$
- Newton direction (why?): $\mathbf{d}^r = -\left(\nabla^2 f(\mathbf{x}^r)\right)^{-1} \nabla f(\mathbf{x}^r)$
 - Benefit
 - Drawback

$$\mathbf{D}^r = \operatorname{diag}\left(\nabla^2 f(\mathbf{x}^r)\right)^{-1}$$

Choices of Step-size:

• Constant: $\alpha^r = \alpha$, $\forall r = 0, 1, ...$

Need to be careful about step-size!!

http://www.eurasip.org/DSPHumour/steepest-descent.jpg

Choices of Step-size:

- Constant: $\alpha^r = \alpha$, $\forall r = 0, 1, ...$
- Exact Minimization: $\alpha^r \in \arg\min_{\alpha \geq 0} f(\mathbf{x}^r + \alpha \mathbf{d}^r)$
- Limited Minimization $\alpha^r \in \arg\min_{\alpha \in (0,\bar{\alpha}]} f(\mathbf{x}^r + \alpha \mathbf{d}^r)$
- Diminishing: $\alpha^r \downarrow 0$, with $\alpha^r = \infty$ Why?
- Back-tracking/Armijo: Constants $\beta, \sigma \in (0,1)$ and initial stepsize $\bar{\alpha}$

$$\alpha^r = \max\{\bar{\alpha}\beta^i \left(f(\mathbf{x}^r) - f(\mathbf{x}^r + \bar{\alpha}\beta^i \mathbf{d}^r) \right) \ge -\sigma (\bar{\alpha}\beta^i \nabla f(\mathbf{x}^r)^T \mathbf{d}^r), \ i = 0, 1, \ldots\}$$

Claim: If $\langle \nabla f(\mathbf{x}^r), \mathbf{d}^r \rangle < \mathbf{0}$, then α^r is well-defined Actual decrease

Predicted decrease

 $\mathbf{x}^{r+1} \leftarrow \mathbf{x}^r + \alpha^r \mathbf{d}^r$

Convergence Analysis

Step-size + Direction \rightarrow Algorithm

- Convergence to a stationary point (set of stationary points)
- Typical minimum requirement
- Asymptotic rate of convergence (Convergence rate) Assume $\{\mathbf{x}^r\} \to \mathbf{x}^*$
 - Error function examples: $e(\mathbf{x}) = \|\mathbf{x} \mathbf{x}^*\|$ or $e(\mathbf{x}) = f(\mathbf{x}) f(\mathbf{x}^*)$
 - Asymptotic behavior $\limsup_{r\to\infty}\frac{e(\mathbf{x}^{r+1})}{e(\mathbf{x}^r)}=\beta \longleftrightarrow \begin{array}{c} \beta\in(0,1): \text{ linear}\\ \beta=1: \text{ sublinear}\\ \beta=0: \text{ superlinear} \end{array}$
 - Iteration complexity analysis: Why we call it linear?
 - Number of iterations required to achieve ϵ optimal solution: $e(\mathbf{x}^r) \leq \epsilon$
 - Currently, worst case analysis

Convergence to Stationary Points

- To a single limit point may not be easy
- Gradient related condition: For any subsequence $\{\mathbf{x}^r\}_{r\in\mathcal{K}}$ converging to a non-stationary point, the corresponding subsequence is bounded and $\limsup_{r\to\infty,r\in\mathcal{K}} \nabla f(\mathbf{x}^r)^T\mathbf{d}^r < 0.$
- Example: $\mathbf{d}^r = -\mathbf{D}^r \nabla f(\mathbf{x}^r)$ with $\bar{\gamma} \mathbf{I} \succeq \mathbf{D}^r \succeq \underline{\gamma} \mathbf{I} \succ \mathbf{0}$, $\forall r$

Convergence to Stationary Points

- - Assume: $\mathbf{x}^{r+1} \leftarrow \mathbf{x}^r + \alpha^r \mathbf{d}^r$
 - **d**^r gradient related
 - Lipschitz gradien $\exists L > 0 \text{ s.t. } \|\nabla f(\mathbf{x}) \nabla f(\mathbf{y})\| \le L\|\mathbf{x} \mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
 - One of the following psize rules
 (a) Diminishing $\alpha' \to 0$, and $\sum_{r} \alpha^r = \infty$ (b) Armijo
 (c) Small enough $0 < \epsilon \le \alpha^r \le \frac{(2-\epsilon)|\nabla f(\mathbf{x}^r)^T \mathbf{d}^r|}{L\|\mathbf{d}^r\|^2}$
- Then, every limit point of the iterates is a stationary point, i.e.,

if
$$\{\mathbf{x}^r\}_{r\in\mathcal{K}} \to \bar{\mathbf{x}}$$
, then $\nabla f(\bar{\mathbf{x}}) = 0$

- Special case: gradient direction Proof (Requires descent lemma) + \mathbf{h}) $\leq f(\mathbf{x}) + \mathbf{h}^T \nabla f(\mathbf{x}) + \frac{L}{2} ||\mathbf{h}||^2$ Why useful? Proof
- These are (asymptotically) monotone rules

No assumption on convexity!

